VOX pops cereal challenge

 A popular technique for studying genes from different organisms plus a new carrier to transfer them to plants have yielded a powerful tool for understanding crops better.


A plant virus with a simple genome promises to help crop scientists understand traits and diseases in wheat and maize more quickly and easily than existing techniques and, as its full potential is tapped, to work across a range of different plant species.

The Foxtail mosaic virus (FoMV) has now overcome the limitations of existing carriers, or vectors, to enable a much greater range of proteins to be expressed in host plants. It uses an established and popular technique known as virus-mediated overexpression (VOX), reports a team of investigators led by Rothamsted Research.

The team, which also includes Syngenta Technology in the US and Syngenta Crop Protection in Switzerland, selects genes from different organsims, including fungal pathogens, and transfers them into cereal crops. It then investigates the genes’ functions by studying the effects of the proteins that they express. The team’s findings are published in full in the August edition of Plant Physiology.

“The development has stirred much interest among cereal pathologists around the world since preliminary findings began to emerge in early June,” says Kostya Kanyuka, a molecular plant pathologist at Rothamsted, who led the study and whose group specialises in state-of-the-art functional genomics.

“You don’t need the whole (stable crop transformation) kitchen,” says Kanyuka, emphasising the simplicity and cost effectiveness of his team’s latest development. “And we’ve demonstrated successful expression of proteins up to 600 amino acids long, at least three times larger than was possible in the past.”

Kanyuka notes: “The new FoMV-derived vector PV101 enables rapid and cost-effective expression of proteins in cereal plants as a route to understanding the function of their genes. And the range of proteins that can be expressed using this vector is wide, plus the new vector overcomes limitations of previously available VOX vectors.”

According to Kim Hammond-Kosack, who leads molecular wheat disease research at Rothamsted and is a member of the team that developed the new vector: “The level and duration  of expression of proteins of interest, both locally and systemically from the new FoMV-VOX vector, is impressive. It’s enabled us to ramp up our de novo protein screening rate in wheat plants, and this is already benefiting several research projects.”

The new FoMV-VOX vector is covered by a Material Transfer Agreement, which enables Rothamsted to make its technology developments available as open access and free of charge.

Get Our E-Newsletter - breaking news to your in-box once a week
Will be used in accordance with our Privacy Policy
Share.

About The Author

John Swire - Deputy editor of Agronomist and Arable Farmer as well as responsibility for the Agronomist and Arable Farmer and Farm Business websites. After 17 years milking cows on the family farm John started writing about agriculture in 1998 and has since written for a variety of publications and has developed a wide circle of contacts within the industry. When not working John is a season ticket holder at Stoke City and also of late has become a fitness freak, listing cycling, swimming and walking as his exercises of choice.